ИННОВАЦИИ БИЗНЕСУ

ПОДРОБНАЯ ИНФОРМАЦИЯ

Заявку на получение дополнительной информации по этому проекту можно заполнить здесь.

Номер

02-089-05

Наименование проекта

Способ получения легированного сплава железа из отходов производства

Назначение

Для получения сплавов железа из железосодержащих отходов.

Рекомендуемая область применения

Порошковая металлургия

Описание

Результат выполнения технологической разработки.

Изобретение относится к порошковой металлургии, в частности к способам получения сплавов железа из железосодержащих отходов производства.

В способе получения легированного сплава железа из отходов производства, включающем смешивание железной окалины в количестве 74-76 мас.% и алюминиевого порошка с получением термитной смеси, загрузку и плавление сплава железа самораспространяющимся высокотемпературным синтезом, при смешивании вводят карбид титана в количестве, равном 15-20% массы термитной смеси, а алюминиевый порошок используют в количестве, равном разности масс термитной смеси и железной окалины.

Получение легированных сплавов с заранее заданными составами и необходимыми свойствами обусловлено образованием в реакционной зоне при плавлении по заявляемому способу сплава ферротитана, карбида железа и оксида алюминия с твердостью до 55 hrc, который используют как инструментальную сталь без дополнительной термообработки для обеспечения высокой твердости, что необходимо при реализации способа, выбранного в качестве прототипа.

Количество алюминиевого порошка, равное разности масс термитной смеси железной окалины и составляющее 24-26 мас.%, является оптимальным, так как обеспечивает наиболее полное горение смеси. При использовании алюминиевого порошка в количестве менее 24 мас.% термитной смеси не происходит выделения достаточного количества тепла в реакционной зоне для проплавления сплава. Использование алюминиевого порошка в количестве более 26 мас.% термитной смеси приводит к появлению пор в металлическом слитке, то есть к отсутствию его монолитности.

Количество карбида титана, составляющее 15-20% массы термитной смеси, является оптимальным, так как повышает скорость горения, температуру реакции самораспространяющегося высокотемпературного синтеза, увеличивает количество тепла, жидкотекучесть, позволяет получить отливки любой конфигурации, например компактный металлический слиток ферротитана и карбида железа с твердостью до 55 hrc и достаточно высокой вязкостью. При содержании карбида титана менее 15% массы термитной смеси реакция самораспространяющегося высокотемпературного синтеза протекает без повышения скорости горения, температуры и количества тепла, а при содержании карбида титана более 20% массы термитной смеси реакция самораспространяющегося высокотемпературного синтеза не возникает.

Способ получения легированного сплава железа из отходов производства осуществляется следующим образом. Производят дозирование и смешивание в смесителе железной окалины и алюминиевого порошка с получением термитной смеси. Железную окалину используют в количестве 74-76 мас.%, а алюминиевый порошок - в количестве, равном разности масс термитной смеси и железной окалины и составляющем 24-26 мас.%. При смешивании в качестве легирующего элемента вводят карбид титана в количестве, составляющем 15-20% массы термитной смеси. Затем термитную смесь и карбид титана загружают в форму. Инициируют начало реакции и производят плавление легированного сплава железа и титана в режиме горения путем самораспространяющегося высокотемпературного синтеза. Плавление железа и карбида титана осуществляют за счет тепла химической реакции термосинтеза вышеуказанных компонентов:

fe 2О3+2Аl+ticfeti+fec+al 2o 3 (1)

Образующийся в реакционной зоне легированный сплав скапливается на дне формы, а другие примеси переходят в шлак.

Пример конкретного выполнения способа получения легированного сплава из отходов производства. Для экспериментальной проверки предлагаемого технического решения использовали молотую железную окалину, отходы кузнечного производства, дисперсность которой определяли проходом через сито 0,16 мм, порошок алюминия АСД-1 и порошок карбида титана с дисперсностью 0,063 мм.

Порошки дозировались в заданном соотношении на аналитических весах с точностью до 0,001 г, механически смешивались всухую в атмосфере воздуха в смесителе типа «пьяная бочка» партиями по 200 г в течение 4 часов. Полученные образцы шихты загружали в керамические формы и инициировали реакцию самораспространяющегося высокотемпературного синтеза с помощью кратковременного теплового импульса. Под действием тепла химической реакции, необходимого для плавления образцов шихты из смеси железной окалины, порошков алюминия и карбида титана, происходило плавление легированного сплава в режиме горения.

Реакция (1) протекала бурно с достаточной температурой и количеством тепла, чтобы вступил в реакцию карбид титана. Температура, скорость горения, количество выделяемой теплоты при реакции самораспространяющегося высокотемпературного синтеза были достаточными для получения по заявляемой технологии легированного сплава. Жидкий металл выливали в металлическую форму. Оксид алюминия и другие примеси переходили в шлак. Получали комплексный металлический слиток сплава ферротитана, карбида железа и оксида алюминия с твердостью до 55 hrc. Выход годного слитка составил 50%. Легированный сплав, изготовленный по заявляемой технологии, можно использовать без дополнительной термообработки в качестве напайки для повышения стойкости ударного или режущего инструмента.

Таким образом, использование предлагаемого способа получения легированного сплава железа из отходов производства обеспечивает получение сплава заданного состава с определенными свойствами при высокой твердости, полноту утилизации производственных отходов, улучшение экологической обстановки, достаточно низкий расход электроэнергии, сокращает длительность процесса до 20-120 сек, снижает стоимость готовой продукции вследствие отсутствия дополнительной термообработки для получения высокой твердости.

Преимущества перед известными аналогами

Обеспечивает получение сплава заданного состава с определенными свойствами при высокой твердости, полноту утилизации производственных отходов, улучшение экологической обстановки, достаточно низкий расход электроэнергии.

Стадия освоения

Способ проверен в лабораторных условиях

Результаты испытаний

Технология обеспечивает получение стабильных результатов

Технико-экономический эффект

Сокращение длительности процесса до 20-120 сек, снижение стоимости готовой продукции, выход годного слитка составляет 50%.

Возможность передачи за рубеж

Возможна передача за рубеж

Дата поступления материала

17.11.2005

Инновации и люди

У павильонов Уральской выставки «ИННОВАЦИИ 2010» (г. Екатеринбург, 2010 г.)

Мероприятия на выставке "Инновации и инвестиции - 2008" (Югра, 2008 г.)

Открытие выставки "Малый бизнес. Инновации. Инвестиции" (г. Магнитогорск, 2007 г.)

Демонстрация разработок на выставке "Малый бизнес. Инновации. Инвестиции" (г. Магнитогорск, 2007 г.)